Flyingpigeon Documentation
Release 1.5.1

Nils Hempelmann

Aug 07, 2020

6

Documentation
Contributing
License

Credits

Table of content

Indices and tables

Bibliography

Index

CONTENTS:

11
53
55

57

Flyingpigeon Documentation, Release 1.5.1

license

license

Flyingpigeon (the bird) The pigeon finds its way home over extremely long distances. [..]. (Wikipedia).
A Web Processing Service Testbed.

Flyingpigeon is a server providing a sandbox and test environment for new Web Processing Services (OGC WPS). It
is part of the birdhouse ecosystem, which aims to build interoperable services in support to substainable development
goals. Once stable, mature and thoroughly tested, Flyingpigeon services are meant to move to stand-alone thematic
servers used in production.

The Flyingpigeon software stack as of version 1.0 was published in Computers & Geosciences and can still be accessed
from the release page. Meanwhile many of the 1.0 processes have migrated to other birdhouse repositories. For
example, processes related to extreme weather event assessment can be found in blackswan, while processes focusing
on climate indices will be found in finch.

CONTENTS: 1

http://flyingpigeon.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/bird-house/flyingpigeon
https://github.com/bird-house/flyingpigeon/blob/master/LICENSE.txt
https://gitter.im/bird-house/birdhouse?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://en.wikipedia.org/wiki/Pigeon_flying
https://birdhouse.readthedocs.io/en/latest/
https://www.sciencedirect.com/science/article/pii/S0098300416302801
https://github.com/bird-house/flyingpigeon/releases/tag/1.0.0
https://github.com/bird-house/blackswan
https://github.com/bird-house/finch

Flyingpigeon Documentation, Release 1.5.1

2 CONTENTS:

CHAPTER
ONE

DOCUMENTATION

Learn more about Flyingpigeon in its official documentation at https://flyingpigeon.readthedocs.io.

Submit bug reports, questions and feature requests at https://github.com/bird-house/flyingpigeon/issues

https://flyingpigeon.readthedocs.io
https://github.com/bird-house/flyingpigeon/issues

Flyingpigeon Documentation, Release 1.5.1

4 Chapter 1. Documentation

CHAPTER
TWO

CONTRIBUTING

You can find information about contributing in our Developer Guide.

Please use bumpversion to release a new version.

https://flyingpigeon.readthedocs.io/en/latest/dev_guide.html
https://flyingpigeon.readthedocs.io/en/latest/dev_guide.html#bump-a-new-version

Flyingpigeon Documentation, Release 1.5.1

6 Chapter 2. Contributing

CHAPTER
THREE

LICENSE

Free software: Apache Software License 2.0

Flyingpigeon Documentation, Release 1.5.1

8 Chapter 3. License

CHAPTER
FOUR

CREDITS

This package was created with Cookiecutter and the bird-house/cookiecutter-birdhouse project template.

https://github.com/audreyr/cookiecutter
https://github.com/bird-house/cookiecutter-birdhouse

Flyingpigeon Documentation, Release 1.5.1

10 Chapter 4. Credits

CHAPTER
FIVE

5.1 Installation

TABLE OF CONTENT

* Install from Conda
* Install from GitHub
* Start Flyingpigeon PyWPS service

* Run Flyingpigeon as Docker container

» Use Ansible to deploy Flyingpigeon on your System

5.1.1 Install from Conda

Warning: TODO: Prepare Conda package.

5.1.2 Install from GitHub

Check out code from the Flyingpigeon GitHub repo and start the installation:

$ git clone https://github.com/bird-house/flyingpigeon.git
$ cd flyingpigeon

Create Conda environment named flyingpigeon:

$ conda env create -f environment.yml
$ source activate flyingpigeon

Install Flyingpigeon app:

$ pip install -e .
OR
make install

For development you can use this command:

11

Flyingpigeon Documentation, Release 1.5.1

$ pip install -e . [dev]
OR
$ make develop

5.1.3 Start Flyingpigeon PyWPS service

After successful installation you can start the service using the f1yingpigeon command-line.

$ flyingpigeon —--help # show help
$ flyingpigeon start # start service with default configuration

OR

$ flyingpigeon start —--daemon # start service as daemon
loading configuration
forked process id: 42

The deployed WPS service is by default available on:
http://localhost:8093/wps?service=WPS&version=1.0.0&request=GetCapabilities.

Note: Remember the process ID (PID) so you can stop the service with ki1l PID.

You can find which process uses a given port using the following command (here for port 5000):

’$ netstat -nlp | grep :5000

Check the log files for errors:

’s tail -f pywps.log

. or do it the lazy way

You can also use the Makefile to start and stop the service:

make start

make status

tail -f pywps.log
make stop

v v v W»n

5.1.4 Run Flyingpigeon as Docker container

You can also run Flyingpigeon as a Docker container.

Warning: TODO: Describe Docker container support.

12 Chapter 5. Table of content

http://localhost:8093/wps?service=WPS&version=1.0.0&request=GetCapabilities

Flyingpigeon Documentation, Release 1.5.1

5.1.5 Use Ansible to deploy Flyingpigeon on your System

Use the Ansible playbook for PyWPS to deploy Flyingpigeon on your system.

5.2 Configuration

5.2.1 Command-line options

You can overwrite the default PyWPS configuration by using command-line options. See the Flyingpigeon help which
options are available:

$ flyingpigeon start --help
——hostname HOSTNAME hostname in PyWPS configuration.
—-—-port PORT port in PyWPS configuration.

Start service with different hostname and port:

$ flyingpigeon start --hostname localhost —--port 5001

5.2.2 Use a custom configuration file

You can overwrite the default PyWPS configuration by providing your own PyWPS configuration file (just modifiy
the options you want to change). Use one of the existing sample—=«.cfqg files as example and copy them to etc/
custom.cfgqg.

For example change the hostname (demo.org) and logging level:

$ cd flyingpigeon

$ vim etc/custom.cfg

$ cat etc/custom.cfg

[server]

url = http://demo.org:8093/wps

outputurl = http://demo.org:8093/outputs

[logging]
level = DEBUG

Start the service with your custom configuration:

start the service with this configuration
$ flyingpigeon start -c etc/custom.cfg

5.3 User Guide

e command line

* Python syntax:

placeholder for some Tutorials how to use the processes of Flyingpigeon.

5.2. Configuration 13

http://ansible-wps-playbook.readthedocs.io/en/latest/index.html
http://pywps.org/
http://pywps.org/

Flyingpigeon Documentation, Release 1.5.1

5.3.1 command line

with birdy (reference to birdy)

5.3.2 Python syntax:

"munpython WPS execute"""

from owslib.wps import WebProcessingService, monitorExecution
from os import system

wps = WebProcessingService (url="http://localhost:8093/wps", verbose=False)
print ("Service '{}' is running".format (wps.identification.title))

Service 'Flyingpigeon' is running

for process in wps.processes:

print ('/} : \t {/)'.format (process.identifier, process.abstract))
subset : Return the data for which grid cells intersect the selected polygon for
—each input dataset as well asthe time range selected.
subset_bbox : Return the data for which grid cells intersect the bounding box
—for each input dataset as well asthe time range selected.
subset_continents : Return the data whose grid cells intersect the selected
—continents for each input dataset.
subset_countries : Return the data whose grid cells intersect the selected
—countries for each input dataset.
pointinspection : Extract the timeseries at the given coordinates.
subset_WFS : Return the data for which grid cells intersect the selected
—polygon for each input dataset.
plot_timeseries : Outputs some timeseries of the file field means. Spaghetti and

—uncertainty plot

define some data urls

urll = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—~dailyavgs/surface/slp.2000.nc’
url2 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2001.nc'
url3 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2002.nc'
urld = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.

—dailyavgs/surface/slp.2003.nc'

execute = wps.execute (
identifier="plot_timeseries", #indices_clipping”,
inputs=][
("resource",urll),
("resource",url2),
("resource",url3),
("resource",urld),
("variable" , "slp"),
1)

(continues on next page)

14 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

(continued from previous page)

monitorExecution (execute, sleepSecs=5)
print (execute.getStatus())

for o in execute.processOutputs:
print (o.reference)

owslib.wps.WPSException : {'code': 'NoApplicableCode', 'locator': 'None',6 'text':
—'Process failed, please check server error log'}
ProcessFailed

’from flyingpigeon.nc_utils import get_coordinates

5.4 Developer Guide

Building the docs
* Running tests
* Run tests the lazy way

* Prepare a release

* Bump a new version

Warning: To create new processes look at examples in Emu.

5.4.1 Building the docs

First install dependencies for the documentation:

’$ make develop ‘

Run the Sphinx docs generator:

’s make docs ‘

5.4.2 Running tests

Run tests using pytest.

First activate the f1yingpigeon Conda environment and install pytest.

$ source activate flyingpigeon

$ pip install -r requirements_dev.txt # 1f not already installed
OR

$ make develop

5.4. Developer Guide 15

https://github.com/bird-house/emu
https://docs.pytest.org/en/latest/

Flyingpigeon Documentation, Release 1.5.1

Run quick tests (skip slow and online):

’$ pytest —-m 'not slow and not online'"

Run all tests:

’$ pytest

Check pep8:

’$ flakes8

5.4.3 Run tests the lazy way

Do the same as above using the Makefile.

$ make test
$ make test-all
$ make lint

5.4.4 Prepare a release

Update the Conda specification file to build identical environments on a specific OS.

Note: You should run this on your target OS, in our case Linux.

conda env create -f environment.yml

source activate flyingpigeon

make clean

make install

conda list -n flyingpigeon —--explicit > spec—-file.txt

v v v n

5.4.5 Bump a new version

Make a new version of Flyingpigeon in the following steps:
* Make sure everything is commit to GitHub.
» Update CHANGES . rst with the next version.
* Dry Run: bumpversion --dry-run --verbose --new-version 0.8.1 patch
e Doit: bumpversion —--new-version 0.8.1 patch
* ... or: bumpversion —-—-new-version 0.9.0 minor
e Pushit: git push
e Pushtag: git push —--tags

See the bumpversion documentation for details.

16 Chapter 5. Table of content

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#building-identical-conda-environments
https://pypi.org/project/bumpversion/

Flyingpigeon Documentation, Release 1.5.1

5.5 Process Descriptions

* Migrated Processes:
e Subset Processes

e Data Visualization:

* Spatial Analogues

Following is a detailed description of processes in Flyingpigeon. As Flyingpigeon is currently dedicated to be the
Testbed for Process development, existing processes (like published for flyingpigeon_version_v1.0) might migrate to
other birds (WPS services in birdhouse) in upcoming version.

5.5.1 Migrated Processes:

Here comes a list of Processes already developed but currently not available in flyingpigeon. In case the processes
were migrated you can see the WPS where you can find them:

Process group migrated to: brief description

Analogs of atmospheric flow | BLACKSWAN | Extreme Weather Analytics
Weather Regimes BLACKSWAN | Extreme Weather Analytics
Climate Indices FINCH Climate Monitoring
Species Distribution Models | Disabled Climate Impact

Segetal Flora Disabled Climate Impact

5.5.2 Subset Processes

Generates a polygon subset of input netCDF files. Based on an ocgis call, several pre-defined polygons (e.g. world
countries) can be used to generate an appropriate subset of input netCDF files. Spatial subsetting are methods of
deriving a new set of data from another set of data using interpolation techniques to generate different spatial or
temporal resolutions.

The User can make the principal decisions to define the area or areas to be subsetted and in case of multiple areas
wether they should stay in separate files or be merged to an unit.

Point-inspection can be seen as a special form of subsetting. On defined coordinates a 1D time-series will be generated
for each coordinate point.

Note: See the Subset Processes API for detailed options and data-IO.

In case of polygon subsetting used to subset the shape of e.g. countries or continents, flyingpigeon contains prepared
shapefiles. To increase the performance the shapefiles had been optimized with the following steps:

5.5. Process Descriptions 17

https://flyingpigeon.readthedocs.io/en/1.1.0/descriptions/index.html

Flyingpigeon Documentation, Release 1.5.1

Shapefile preparation

This text describes how to prepare, simplify and customize shapefiles from the GADM database. We used GADM
version 2.7.

Start by downloading gadm26_levels.gdb, the ESRI shapefile for the whole world that contains all six administration
levels. The resulting file is a directory that can be read with qgis 2.8. (Note: for Fedora users, you must have Fedora
22 in order to upgrade to qgis 2.8).

Open shapefile in qgis

To open gadm26_levels.gdb in qgis, follow the steps below:
Add Vector Layer ->

......... Source type = Directory

......... Source:

.................. Type: OpenFileGDB

After selecting the directory, select “Open” and a window will appear listing the six levels. Select the level you would
like. We used “adm1” which corresponds to the region level (i.e. one level smaller than country level).

Filter the countries you wish to retain

You can use qgis to select countries you wish to extract from the world shapefile. Use the “Advanced Filter (Expres-
sion)” option in the Attribute Table. For example, for a selection of EU countries, you can use this expression:

«ISO » LIKE ‘%AUT%’ OR « ISO » LIKE ‘%BEL%’ OR « ISO » LIKE ‘%BGR%’ OR « ISO » LIKE
‘DCYP%’ OR «ISO » LIKE ‘%CZE%’ OR «ISO » LIKE ‘%DEU%’ OR «ISO » LIKE ‘%DNK%’ OR
« ISO » LIKE ‘%ESP%’ OR « ISO » LIKE ‘%EST%’ OR « ISO » LIKE ‘%FIN%’ OR « ISO » LIKE
‘%FRA%’ OR «ISO » LIKE ‘%GBR%’ OR « ISO » LIKE ‘%GRC%’ OR «ISO » LIKE ‘%HUN%’ OR
« ISO » LIKE ‘%HRV%’ OR « ISO » LIKE ‘%IRL%’ OR « ISO » LIKE ‘%ITA%’ OR « ISO » LIKE
‘BLVA%’ OR «ISO » LIKE ‘%LTU%’ OR « ISO » LIKE ‘%LUX%’ OR «ISO » LIKE ‘%MLT%’ OR
«ISO » LIKE ‘%NLD%’ OR « ISO » LIKE ‘%POL%’ OR « ISO » LIKE ‘%PRT%’ OR « ISO » LIKE
‘%ROU%’ OR «ISO » LIKE ‘%SVK%’ OR « ISO » LIKE ‘%SVN%’ OR « ISO » LIKE ‘%SWE%’ OR
«ISO » LIKE ‘%NOR%’ OR « ISO » LIKE ‘%CHE%’ OR « ISO » LIKE ‘%ISL%’ OR « ISO » LIKE
‘%MKD%’ OR « ISO » LIKE ‘%MNE%’ OR « ISO » LIKE ‘%SRB%’ OR « ISO » LIKE ‘%MDA%’
OR « ISO » LIKE ‘%UKR%’ OR « ISO » LIKE ‘%BIH%’ OR « ISO » LIKE ‘%ALB%’ OR « ISO »
LIKE ‘%BLR%’ OR «ISO » LIKE ‘%XKO%’

The Attribute Table will then be updated and you can choose all the rows. This selection will be displayed on the map
in the main window of qgis:

18 Chapter 5. Table of content

http://www.gadm.org/
http://www.gadm.org/version2
http://www.gadm.org/version2

Flyingpigeon Documentation, Release 1.5.1

QGIS 2.8.2-Wien v A

Project Edit View Layer Settings Plugins Vector Raster Database Web Processing Help

DEOBRLDRAH0% 2L A HPLQAAR Q6 @ pe AEs 032 Dy AW
Y BRRADSE D SE e blA

Browser e®

> & Home
Favourites

I 4
=
e, @/
V4 » MssaL
@ postalis
» / spatialite .

@R
@
@
%
vz

@ ows
® wcs
@ wrs

@ wMs

Coordinate: [-15.17,70.31 | Scale [522.431 | v/ Rotation: |0.0 .| & Render @ EPSG:4326 (OTF) @

You can save this selection in the format of an ESRI Shapefile:

Layer -> Save as -> Save only selected features

Simplify using mapshaper (command line)
Note that the resulting map is very highly resolved, and it is often necessary to simplify the lines. There is an online
tool called mapshaper that we found to be very effective. It can be used both on the command line and as a web GUI.

On the command line, the default options are: Visvalingam Weighted Area, no Snap Vertices. Choose the simplifica-
tion level, the input and output shapefiles. Here is an example for 1% simplification:

$ mapshaper -i adm1-EU.shp -simplify 1% -o adm1-EU-mapshaped]1.shp
=> Repaired 98 intersections; unable to repair 1 intersection.

This produced a simplified map, shown here (purple) superimposed on the original map (blue), zoomed on the coastline
of Norway:

5.5. Process Descriptions 19

https://github.com/mbloch/mapshaper/wiki/Command-Reference

Flyingpigeon Documentation, Release 1.5.1

L

SEN Y- FERWE FOL
por
x

4

Lyen
R s B B
[P T ——1

& W imi-ry

Simplify using mapshaper (GUI)

You can test the different simplify options using the mapshaper GUI instead of the command line version. Namely:
Visvalingam Weighted Area | Effective Area

Snap Vertices ON | OFF

Also, the GUI seems to be more successful at repairing all intersections.

The figure below shows the original (cyan), NoSnapVertices-WeightedArea (magenta), and NoSnapVertices-
EffectiveArea (purple):

20 Chapter 5. Table of content

http://www.mapshaper.org/

Flyingpigeon Documentation, Release 1.5.1

5.5. Process Descriptions 21

Flyingpigeon Documentation, Release 1.5.1

22 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

e,

(There were very tiny differences between Snap Vertices vs. No Snap Vertices. Too hard to say from this example if
one was better than the other).

Customize shapefile

The shapefile produced from the adm1 level of the ESRI shapefile as described above shows all regions of the selected
countries, but when displayed on the screen, some regions were too small both visually and for the resolution of our
models (~100 km):

5.5. Process Descriptions 23

Flyingpigeon Documentation, Release 1.5.1

Another issue with using the ESRI file containing all six admin levels is that there is no unique identifier column such
as “HASC_1". For example, for the region Homyel” (with a ‘ at the end) in Belarus, “HASC_1" = “BY.HO”. Without
this field, one would be forced to use “NAME_1" = “Homyel’” to identify this region, but the special character * may
cause problems in the python script that reads the file.

So, we need to merge the small country regions together while leaving the larger regions alone.
Steps:
1. We downloaded the GADM shapefile as a single layer (here), and the EU countries were selected as before.

Note: HASC_1” was NULL for some countires, e.g. FRA, ITA, GBR, BEL. We manually replaced the NULLs
with a unique identifier following the convention in the file.

2. We then decided which regions to merge together, and then we formed the following qgis filter expression:

« ISO » LIKE ‘%CYP%’ OR « ISO » LIKE ‘%IRL%’ OR « ISO » LIKE ‘%MDA%’ OR « ISO » LIKE
‘%BGR%’ OR « ISO » LIKE ‘%XKO%’ OR «ISO » LIKE ‘%CHE%’ OR « ISO » LIKE ‘%LIE%’ OR « ISO
» LIKE ‘%DNK%’ OR « ISO » LIKE ‘%HRV%’ OR « ISO » LIKE ‘%BIH%’ OR « ISO » LIKE ‘%SRB%’
OR «ISO » LIKE ‘%PRT%’ OR « ISO » LIKE ‘%MNE%’ OR « ISO » LIKE ‘%ALB%’ OR « ISO » LIKE

24 Chapter 5. Table of content

http://www.gadm.org/version2

Flyingpigeon Documentation, Release 1.5.1

‘%MKD%’ OR « ISO » LIKE ‘%NLD%’ OR « ISO » LIKE ‘%SVN%’ OR « ISO » LIKE ‘%MDA%’ OR «
ISO » LIKE ‘%LUX%’ OR «ISO » LIKE ‘%MLT%’ OR « ISO » LIKE ‘%LIE%’ OR «ISO » LIKE ‘%BIH%’
OR « ISO » LIKE ‘%ROU%’ OR « ISO » LIKE ‘%AUT%’ OR « ISO » LIKE ‘%CZE%’ OR « ISO » LIKE
‘“%SVK%’ OR « ISO » LIKE ‘%HUN%’

3. In the main screen of qgis, these selected countries were regrouped with respect to field “ISO” (i.e. country
level):

Vector -> Geoprocessing tools -> Dissolve -> Dissolve field = [ISO

4. The other countries (whose regions are large enough to be resolved) were selected in the Attribute Table in the
same way, but using ID_1 (corresponding to level adm1) as the identifier.

5. Finally, the two shapefiles were fused together:
Vector -> Data Management Tools -> Merge shapefiles to one

6. The resulting shapefile was simplified with the mapshaper GUI at 0.1%, which can then be read into the flying-
pigeon python scripts.

7. To display in the browser, the shapefile was converted to geojson using ogr2ogr:
$ ogr2ogr -overwrite -f GeoJSON output.geojson input.shp

Here is the resulting file containing region-level and country-level areas:

5.5. Process Descriptions 25

http://www.mapshaper.org/
http://www.gdal.org/ogr2ogr.html

Flyingpigeon Documentation, Release 1.5.1

5.5.3 Data Visualization:

They are various ways of data visualization. In flyingpigeon are realized the basic ones of creating an ordinary graphic
file. It helps to have a quick understanding of your data.

Time series visualization of netCDF files. Creates a spaghetti plot and an uncertainty plot.

Plots are generated based on matplotlib. Appropriate functions are located in eggshell.

Note: See the Plot Timeseries API for detailed options and data-10.

26 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

5.5.4 Spatial Analogues

Spatial analogues are maps showing which areas have a present-day climate that is analogous to the future climate of
a given place. This type of map can be useful for climate adaptation to see how well regions are coping today under
specific climate conditions. For example, officials from a city located in a temperate region that may be expecting
more heatwaves in the future can learn from the experience of another city where heatwaves are a common occurrence,
leading to more proactive intervention plans to better deal with new climate conditions.

Spatial analogues are estimated by comparing the distribution of climate indices computed at the target location over
the future period with the distribution of the same climate indices computed over a reference period for multiple
candidate regions. A number of methodological choices thus enter the computation:

* Climate indices of interest,

* Metrics measuring the difference between both distributions,
» Reference data from which to compute the base indices,

* A future climate scenario to compute the target indices.

The climate indices chosen to compute the spatial analogues are usually annual values of indices relevant to the
intended audience of these maps. For example, in the case of the wine grape industry, the climate indices examined
could include the length of the frost-free season, growing degree-days, annual winter minimum temperature andand
annual number of very cold days [Roy2017].

The flyingpigeon.processes.SpatialAnalogProcess offers six distance metrics: standard euclidean
distance, nearest neighbor, Zech-Aslan energy distance, Kolmogorov-Smirnov statistic,Friedman-Rafsky runs statis-
tics and the Kullback-Leibler divergence. A description and reference for each distance metric is given in
flyingpigeon.dissimilarity and based on [Grenier2013].

The reference data set should cover the target site in order to perform validation tests, and a large area around it. Global
or continental scale datasets are generally used, but the spatial resolution should be high enough for users to be able to
recognize climate features they are familiar with.

Different future climate scenarios from climate models can be used to compute the target distribution over the future
period. Usually the raw model outputs are bias-corrected with the observation dataset. This is done to avoid discrep-
ancies that would be introduced by systematic model errors. One way to validate the results is to compute the spatial
analog using the simulation over the historical period. The best analog region should thus cover the target site.

The WPS process automatically extracts the target series from a netCDF file using geographical coordinates and the
names of the climate indices (the name of the climate indices should be the same for both netCDF files). It also allows
users to specify the period over which the distributions should be compared, for both the target and candidate datasets.

An accompanying process flyingpigeon.processes.PlotSpatialAnalogProcess can then be called
to create a graphic displaying the dissimilarity value. An example of such graphic is shown below, with the target
location indicated by a white marker.

Note: See the Spatial Analogs API for a description of both processes.

5.5. Process Descriptions 27

Flyingpigeon Documentation, Release 1.5.1

Spatial Analog Example

+

Dissimilarity

Fig. 1: A map of the dissimilarity metric computed from mean annual precipitation and temperature values in Montreal
over the period 1970-1990.

References
5.6 Examples

These examples demonstrates a few features of the Flyingpigeon server.

5.6.1 Subset processes

The WPS flyingpigeon provides several processes to perform spatial subsets of netCDF files:
 subset_bbox: Crop netCDF files to a given latitude longitude bounding box.
* subset_countries: Crop netCDF files to only the intersection of predefined countries.
* subset_continents: Crop netCDF files to only the intersection of predefined continents.

 subset_wfs_polygon: Crop netCDF files to only the intersection of given polygons available on a given WFS
Sserver.

Note that subsetting operations do not average or reduce results over the selected area, they only return the grid sells
intersecting with the area. A mask is applied to cells that are outside the selected area, but inside the rectangular grid
required for netCDF files.

: # Import the WPS client and connect to the server

from birdy import WPSClient
import birdy
from os import environ

To display Images from an url

(continues on next page)

28 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

(continued from previous page)

from IPython.core.display import HTML
from IPython.display import Image

wait until WPS process is finished
import time

This cell is for server admnistration test purpose
Ignore this cell and modify the following cell according to your needs

fp_server = environ.get ('WPS_URL')
print (fp_server) # link to the flyingpigoen server

http://localhost:8093

URL to a flyingpigeon server
fp_server = 'https://pavics.ouranos.ca/twitcher/ows/proxy/flyginpigeon/wps'

Connect to the server with birdy client

Simple connection (not recommended for larger processing)
fp = WPSClient (fp_server)

Asyncronous connection with progess status requests

fp_i = WPSClient (url=fp_server, progress=True)

Explore the available processes:

Enter ‘fp?' for general exploration on processes provided by flyingpigeon
fp?

Or get help for a process 1in particular
help (fp.subset_continents) # or type: fp.subset_countries?

Help on method subset_continents in module birdy.client.base:

subset_continents (resource=None, region='Africa', mosaic=False) method of birdy.
—client.base.WPSClient instance

Return the data whose grid cells intersect the selected continents for each input, |
—dataset.

Parameters
region : {'Africa', 'Asia', 'Australia', 'North America', 'Oceania', 'South,
—America', 'Antarctica', 'Europe'}string
Continent name.
mosaic : boolean

If True, selected regions will be merged into a single geometry.
resource : ComplexData:mimetype: application/x—-netcdf’, :mimetype: application/x-—
—tar’, :mimetype: application/zip®
NetCDF Files or archive (tar/zip) containing netCDF files.

Returns

output : ComplexData:mimetype: application/x-netcdf"’
NetCDF output for first resource file.

metalink : ComplexData:mimetype: application/metalink+xml; version=4.0"
Metalink file with links to all NetCDF outputs.

5.6. Examples 29

Flyingpigeon Documentation, Release 1.5.1

some test data

'https://github.com/roocs/mini-esgf-data/raw/master/test_data/group_workspaces/

— jasmin2/cp4cdsl/data/c3s-cordex/output/EUR-11/IPSL/MOHC~-HadGEM2-ES/rcp85/rl1ilpl/
—IPSL-WRF381P/vl/day/psl/v20190212/"

'psl _EUR-11_MOHC-HadGEM2-ES_rcp85_ rlilpl IPSL-WRF381P_vl_day _20060101-20101231.nc"

Specify input files

base_url = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/"

urls = [base_url + f'slp.{year/.nc' for year in range (2000, 2002)]

Subset over a bounding box

Note that all netCDF input files will be subsetted individually.

bbox subset of one file without interaction to the server

resp = fp.subset_bbox(

resource=urls([0], # can be also a list of files but it is recommended to
—run large processes with fp_ i

lon0=20,

lonl=70,

lat0=10,

lat1=50,

start=None, # optional to select a time periode

end=None,

variable=None, # can be set if the variable is known, otherwise the,
—process detects the variable name

)

Check the output files:
bbox = resp.get ()

bbox of multiple files

resp = fp_1i.subset_bbox (

resource=urls,

lon0=20,

lonl=70,

lat0=10,

latl1=50,

start=None, # optional to select a time periode

end=None,

variable=None, # can be set if the variable is known, otherwise the,
—process detects the variable name

)
using fp_ 1 you need to wait until the processing is complete!
timeout = time.time () + 60x5 # 5 minutes from now
while resp.getStatus () != 'ProcessSucceeded':

time.sleep (1)
(continues on next page)

30 Chapter 5. Table of content

[12]:

[12]:

Flyingpigeon Documentation, Release 1.5.1

(continued from previous page)

if time.time () > timeout: # to avoid endless waiting 1if the process failed
break

Get the output files:
bbox = resp.get ()

HBox (children= (IntProgress (value=0, bar_style='info', description='Processing:"'),
—Button (button_style="'danger'...

Plot the test file with the flyingpigeon plot function
out_plot = fp.plot_map_timemean (resource=bbox.output)

and display the output
Image (url= out_plot.get () [0], width=400)

<IPython.core.display.Image object>

If you want to download the result files:

Download files stored in a metalink

requires https://github.com/metalink-dev/pymetalink
#

from metalink import download

import tempfile

path = tempfile.mkdtemp ()
files = download.get (bbox.metalink, path=path, segmented=False, force=True)
len(files)

Metalink content-type detected.
Downloading to /tmp/tmp_v0710_1/slp.2000_bbox_subset.nc.
Downloading to /tmp/tmp_v0710_1/slp.2001_bbox_subset.nc.

2

Subset over a continent

As for bounding box subsetting, all netCDF input files are subsetted individually. Here, it is possible to specifiy one
or multiple continents. If mosaic is True, all continents are merged into one shape before subsetting. If False,
each input file is subsetted over each polygon, such that the number of output files is the number of input files times
the number of continents.

The subset_countries process works the same with polygons for countries instead of continents.

There are two outputs: * a netCDF file to have a quick test to check if the process went according to the users needs *
a metalink file with the list of all output files

Run the process
resp = fp_1i.subset_continents (resource=urls, region=['Europe', 'Africa'], mosaic=True)

using fp_1i you need to wait until the processing is complete!
timeout = time.time () + 60%5 # 5 minutes from now

while resp.getStatus() != 'ProcessSucceeded':
time.sleep (1)
(continues on next page)

5.6. Examples 31

[14]:

[15]:

Flyingpigeon Documentation, Release 1.5.1

(continued from previous page)

if time.time () > timeout: # to avoid endless waiting 1if the process failed
break

Check the output files:
cont = resp.get ()

HBox (children= (IntProgress (value=0, bar_style='info', description='Processing:'),
—Button (button_style='danger'...

plot the test file (url of output) with the flyingpigon plot function
resp = fp.plot_map_timemean (resource=cont.output)

The plot process returnes one graphic file.

It can be plotted directly by asking birdy to get python objects, instead of links_

—~to files.
resp.get (asobj=True) .plotout_map

32 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

101800

101600

101400

r101200

101000

100800

-15 0 15 30 45 60

Subset with WFS server

[16]:
inputs = dict (nc="https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/
—birdhouse/nrcan"
"/nrcan_northamerica_monthly"
"/tasmax/nrcan_northamerica_monthly_2015_tasmax.nc",
typename="public:USGS_HydroBASINS_lake_na_levl12",
geoserver="https://pavics.ouranos.ca/geoserver/wfs",
fidl="USGS_HydroBASINS_lake_na_levl1l2.67061",
£1d2="USGS_HydroBASINS_lake_na_lev12.67088",
mosaic=False)

(continues on next page)

5.6. Examples 33

[17]:

Flyingpigeon Documentation, Release 1.5.1

(continued from previous page)

-
[0}
9}

T

I

fp_i.subset_wfs_polygon (resource=inputs('nc'],
typename=inputs|['typename'],
featureids=inputs/['fidl'],
geoserver=inputs ['geoserver'],
mosaic=False,
start=None,
end=None,
variable=None,

)

S oW R HH W R R HR W

using fp_1i you need to wait until the processing is complete!

timeout = time.time() + 60x5 # 5 minutes from now

while resp.getStatus () != 'ProcessSucceeded':

time.sleep (1)

if time.time () > timeout: # to avoid endless waiting if the process
break

outputs = resp.get ()

5.6.2 Plot processes

The WPS flyingpigeon provides several processes to perform plot subsetts of netCDF files.

They are several processes to perfom timeseries graphics as well as spatial visualisations as maps.

birdy client for communication with the server:
from birdy import WPSClient
from os import environ

handling files and folders
from os import path, listdir
from urllib import request

wait until WPS process is finished
import time

to display external png graphics in notebook:
from IPython.display import Image
from IPython.core.display import HTML

This cell is for server admnistration test purpose
Ignore this cell and modify the following cell according to your needs

fp_server = environ.get ('FYINGPIGEON_WPS_URL"')
print (fp_server) # link to the flyingpigoen server

http://localhost:8093/wps

failed

34 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

URL to a flyingpigeon server
fp_server = 'https://pavics.ouranos.ca/twitcher/ows/proxy/flyginpigeon/wps'

fp_i = WPSClient (fp_server, progress=True)
fp = WPSClient (fp_server)

read in the required files:

this is an example of an local installation, where local files are processed

indices were calculated with the birdhouse WPS finch: https://finch.readthedocs.io/en/latest/processes.html

read in the existing indices based on bias_adjusted tas files:
tas_NER = '/home/nils/data/example_data/NER/"'
tasInd_NER = [tas_NER+f for f in listdir(tas_NER) if '.nc' in f]

tasInd_NER.sort ()

pip install pymetalink

frequencies
freg=['yr', 'mon']

precipitation indices
pr_indices = ['prcptot', 'rxlday', 'wetdays', 'cdd', 'cwd', 'sdii', 'rx5day']
tas_indice = 'tg_mean'

titles = ['Somme annuelle des précipitations’',

'"Jours de plus fortes précipitations’,
'"Nombre de jours humide',

'Journées consécutives de sécheresse’',
'"Jours humides consécutifs'’,

"Index d'intensité de précipitations”,
'Somme max. sur 5 jours consécutifs'’,
'Températures moyennes annuelles']

dates = ['1976-01-01', '2005-12-31', '2036-01-01', '2065-12-31', '2071-01-01', '2099-
—12-30"]

find ensemble files for one indice based on pr files:

tasInd_NER = [tas_NER+f for f in listdir(tas_NER) if '.nc' in f]

resource = [f for f in tasInd_NER if tas_indice in f] # and '_yr. ' in f

5.6. Examples

35

https://finch.readthedocs.io/en/latest/processes.html

Flyingpigeon Documentation, Release 1.5.1

Spaghetti Plot

A simple way of visualisation of an ensemble of datasets. The plot visualises historical and rcp runs in different colors

: out_plot = fp.plot_spaghetti (resource=resource, title='Test plot',

delta = -273.15, # to convert K to C
figsize='9,5"', # ymin=0, ymax=14 #
)

len (out_plot.get())

1

: # display the output graphic url:

out_plot.get (asobj=True) .plotout_spaghetti
or with:
Image (out.get () [0], width=400)

Test plot

3061
3041 F'“N
o M‘ ”" i
3021 T A
YW Af "“c,‘ INA
3001
208

RCP uncertainty timeseries

An ensemble of indice files will be visualised as median and the appropriate uncertainties seperatled by historical and
ICp runs.

: resp = fp.plot_uncertaintyrcp(resource=resource, title='Yearly mean temperature',

—~delta = -273.15,
figsize='9,5', # ymin=20, ymax=100 #
)

36 Chapter 5. Table of content

[11]:

[11]:

Flyingpigeon Documentation, Release 1.5.1

onother way to display the output graphic.
download the file

out_file = '/tmp/ts_uncertainty_ tg-yr.png'
request.urlretrieve (resp.get () [0], out_file)
display the graphic:

Image (out_file, width=400)

Yearly mean temperature

33 A

32 N
31

30 fJ/¢
29
28 n

27

26 |

Plot a map

Spatial visualisation of data as a mean over the time.

select only the historical runs of the indices ensemble
hist = [f for f in resource if 'historical' in f]

process the data of the years 1971-2000

out = fp.plot_map_timemean (resource=hist, title='Historical reference (1971-2000)"',

delta = -273.15,

datestart='1971-01-01"', dateend='2000-12-31",
—a time range

vmin=20, vmax=30,
cmap=""

) #

display the output graphic
Image (out.get () [0], width=600)

subset,,

5.6. Examples

37

[147:

Flyingpigeon Documentation, Release 1.5.1

30
22.5 22.5
28
21.0 21.0
19.5 19.5
26
18.0 18.0
16.5 16.5 o4
15.0 - 15.0
22
13.5 13.5
12.0 12.0
20
plot a climate change signal
calculation of the differnence in a climate signal between a future projection to a reference periode
dates = ['1971-01-01', '2000-12-31', '2036-01-01', '2065-12-31', '2071-01-01', '2100-
—12-31"]
ref = [f for f in tasInd NER if tas_indice in f and 'historical' in f] # and fr in f

proj = [f for f in tasInd NER if tas_indice in f and 'rcp85' in f]

ref.sort ()
proj.sort ()

resp = fp_i.climatechange_signal (resource_ref=ref,
resource_proj=proj,
variable='tg-mean',

title="'Scenario {} {} ({})'.format ('RCP 8.5', tas_
—indice, '2071-2100"),
datestart_ref=dates|[0],
dateend_ref=dates|[1],
datestart_proj=dates[2],
dateend_proj=dates[3],
vmin=0 , vmax=7,
cmap="'BrBG'
)

H=

HBox (children=(IntProgress (value=0, bar_style='info', description='Processing:'),
—Button (button_style="'danger'...

38 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

[15]: # using fp_1 you need to wait until the processing is complete!
timeout = time.time () + 60«1 # 1 minute from now
while resp.getStatus() != 'ProcessSucceeded':
time.sleep (1)
if time.time () > timeout: # to avoid endless waiting if the process failed

break

Image (resp.get () [2], width=600)

(157 Scenario RCP 8.5 tg_mean (2071-2100)

\,

~
L7~

3.0

22.5 22.5

2.8

21.0 21.0

19.5 19.5

2.6

18.0 18.0

16.5 16.5

2.4

15.0 15.0

2.2

13.5 13.5

12.0 12.0

2.0

5.7 Processes API

o Subset Processes API

e Plot Timeseries API

* Spatial Analogs API

5.7. Processes API 39

Flyingpigeon Documentation, Release 1.5.1

5.7.1 Subset Processes API

Sub-setting is performed with ocgis. Appropriate functions are located in eggshell.

class flyingpigeon.processes.wps_pointinspection.PointinspectionProcess
pointinspection Point Inspection (v0.10)

Extract the timeseries at the given coordinates.
Parameters

* resource (application/x—-netcdf, application/x—-tar, application/
z1p) — NetCDF files or archive (tar/zip) containing NetCDF files.

* coords (string)— Comma-seperated tuple of WGS8S5 lon, lat decimal coordinates (e.g.
2.356138, 48.846450).

Returns tarout — Tar archive containing one CSV file per input file, each one storing time series
column-wise for all point coordinates.

Return type application/x-tar

References

* LSCE

* Doc

class flyingpigeon.processes.wps_subset_wfs_polygon.SubsetWFSPolygonProcess
subset-wfs—polygon Subset (v0.2)

Return the data for which grid cells intersect the selected polygon for each input dataset as well asthe time range
selected.

Parameters

* resource (application/x—-netcdf, application/x-ogc—dods) — NetCDF
file or OPEnDAP url pointing to netCDF file.

* typename (string, optional)- Name of the layer in GeoServer.
* featureids (string, optional)- fid(s) of the feature in the layer.

* geoserver (string, optional) - Typically of the form http://host:port/geoserver/
wis

* start (dateTime, optional)- Initial datetime for temporal subsetting.

* end (dateTime, optional)— Final datetime for temporal subsetting.

40 Chapter 5. Table of content

http://www.lsce.ipsl.fr/en/index.php
http://flyingpigeon.readthedocs.io/en/latest/
http://host:port/geoserver/wfs
http://host:port/geoserver/wfs

Flyingpigeon Documentation, Release 1.5.1

e variable (string, optional) - Name of the variable in the NetCDF file.Will be
guessed if not provided.

Returns
* output (application/x—netcdf)— NetCDF output for first resource file.

e metalink (application/metalink+xml; version=4.0) — Metalink file with
links to all NetCDF outputs.

class flyingpigeon.processes.wps_subset_continents.SubsetcontinentProcess
subset_continents Subset Continents (v0.11)

Return the data whose grid cells intersect the selected continents for each input dataset.
Parameters
* region (string) - Continent name.

* resource (application/x—-netcdf, application/x—-tar, application/
z1p) — NetCDF Files or archive (tar/zip) containing netCDF files.

Returns
* output (application/x—netcdf)— NetCDF output for first resource file.

* metalink (application/metalink+xml; version=4.0) — Metalink file with
links to all NetCDF outputs.

References

e Doc

class flyingpigeon.processes.wps_subset_countries.SubsetcountryProcess
subset_countries Subset Countries (v0.11)

Return the data whose grid cells intersect the selected countries for each input dataset.
Parameters

* region (string) — Country code, see ISO-3166-3: https://en.wikipedia.org/wiki/ISO_
3166-1_alpha-3#Officially_assigned_code_elements

* resource (application/x-netcdf, application/x-tar, application/
z1ip) — NetCDF Files or archive (tar/zip) containing NetCDF files.

Returns

* output (application/x—netcdf)— NetCDF output for first resource file.

5.7. Processes API 41

https://flyingpigeon.readthedocs.io/en/latest/processes_des.html#subset-processes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3#Officially_assigned_code_elements

Flyingpigeon Documentation, Release 1.5.1

e metalink (application/metalink+xml; version=4.0) — Metalink file with
links to all NetCDF outputs.

References

e Doc

class flyingpigeon.processes.wps_subset_bbox.SubsetBboxProcess
subset_bbox Subset netCDF file on bounding box (v0.2)

Return the data for which grid cells intersect the bounding box for each input dataset as well asthe time range
selected. This implies that the centroid ofa grid cell can be outside the bounding box.

Parameters

* resource (application/x—netcdf, application/x—ogc—dods) — NetCDF
file or OPEnDAP url pointing to netCDF file.

* lon0 (float)— Minimum longitude.

* lonl (float)— Maximum longitude.

¢ lat0 (float)— Minimum latitude.

e latl (float)— Maximum latitude.

* start (dateTime, optional) - Initial datetime for temporal subsetting.
* end(dateTime, optional) - Final datetime for temporal subsetting.

e variable (string, optional) - Name of the variable in the NetCDF file.Will be
guessed if not provided.

Returns
* output (application/x—netcdf)— NetCDF output for first resource file.

* metalink (application/metalink+xml; version=4.0) — Metalink file with
links to all NetCDF outputs.

References

e Doc

42 Chapter 5. Table of content

https://flyingpigeon.readthedocs.io/en/latest/processes_des.html#subset-processes
https://flyingpigeon.readthedocs.io/en/latest/processes_des.html#subset-processes

Flyingpigeon Documentation, Release 1.5.1

5.7.2 Plot Timeseries API

class flyingpigeon.processes.wps_plot_timeseries.PlottimeseriesProcess
plot_timeseries Graphics (timeseries) (v0.11)

Outputs some timeseries of the file field means. Spaghetti and uncertainty plot
Parameters

* resource (application/x-netcdf, application/x—tar, application/
z1ip) — NetCDF Files or archive (tar/zip) containing NetCDF files. (Info)

* variable (string, optional)— Variable to be expected in the input files (variable
will be detected if not set)

Returns
* plotout_spagetti (image/png) — Visualisation of single variables as a spaghetti plot

* plotout_uncertainty (image/png) — Visualisation of single variables ensemble mean
with uncertainty

References

e Doc

5.7.3 Spatial Analogs API

class flyingpigeon.processes.wps_spatial_analog.SpatialAnalogProcess
spatial_analog Spatial analog of a target climate. (v0.2)

Spatial analogs based on the comparison of climate indices. The algorithm compares the distribution of the
target indices with the distribution of spatially distributed candidate indices and returns a value measuring the
dissimilarity between both distributions over the candidate grid.

Parameters

* candidate (application/x—netcdf, application/x-tar, application/
z1ip) — NetCDF files or archive (tar/zip) storing the candidate indices. The output will be
stored on this grid. (Info)

* target (application/x-netcdf, application/x-tar, application/
zip) — NetCDF files or archive (tar/zip).containing netcdf files storing the target indices.
(Info)

* location (string) - Geographical coordinates (lon,lat) of the target location.
* indices (string)— One or more climate indices to use for the comparison.

e dist ({'seuclidean', 'nearest_neighbor', 'zech_aslan'’,
'kolmogorov_smirnov', 'friedman_rafsky', 'kldiv'}, optional)-
Dissimilarity metric comparing distributions.

* dateStartCandidate (dateTime, optional) — Beginning of period (YYYY-
MM-DD) for candidate data. Defaults to first entry.

5.7. Processes API 43

https://flyingpigeon.readthedocs.io/en/latest/processes_des.html#data-visualization

Flyingpigeon Documentation, Release 1.5.1

* dateEndCandidate (dateTime, optional)-End of period (YYYY-MM-DD) for
candidate data. Defaults to last entry.

* dateStartTarget (dateTime, optional) — Beginning of period (YYYY-MM-
DD) for target data. Defaults to first entry.

* dateEndTarget (dateTime, optional)-End of period (YYYY-MM-DD) for tar-
get data. Defaults to last entry.

Returns output — Dissimilarity between target at selected location and candidate distributions over
the entire grid.

Return type application/x—-netcdf

References
* Doc
class flyingpigeon.processes.wps_plot_spatial_analog.PlotSpatialAnalogProcess

plot_spatial_analog Map of dissimilarity values calculated by the spatial_analog process. (v0.1)

Produce map showing the dissimilarity values computed by the spatial_analog process as well as indicating by
a marker the location of the target site.

Parameters

e resource (application/x—netcdf, application/x—tar, application/
zip) — Dissimilarity between target at selected location and candidate distributions over
the entire grid. (Info)

e fmt ({ 'png', 'pdf', 'svg', 'ps', 'eps'}, optional)- Figure format
* title(string, optional)- Figure title.
Returns output_figure — Map of dissimilarity values.

Return type image/png, application/pdf, image/svg+xml, application/
postscript

References

¢ Doc

5.8 Tutorials

5.8.1 Subset Processes of Flyingpigeon

Subset process as ipython notebook:

https://github.com/bird-house/notebooks/blob/master/flyingpigeon_birdy_subset.ipynb

The WPS flyingpigeon provides several processes to perform spatial subsetts of netCDF files. This are:
* bounding box: reduces the input netCDF files to a given latitude longitude bounding box.

* country or continent subset: to reduce netCDF files to only the intersection of selected polygons. Countries
and Continents are predifined.

* WES subset: reduce netCDF files to only the intersection of given polygons available on a given WES server.

44 Chapter 5. Table of content

http://flyingpigeon.readthedocs.io/en/latest/
http://flyingpigeon.readthedocs.io/en/latest/
https://github.com/bird-house/notebooks/blob/master/flyingpigeon_birdy_subset.ipynb

Flyingpigeon Documentation, Release 1.5.1

import the WPS client and connet to the server
from birdy import WPSClient
import birdy

fp_server = 'http://localhost:8093/wps' # finch

simple connection (not recommended for larger processing)
fp = WPSClient (fp_server)

asyncron connection with progess status requests
fp_1i = WPSClient (url=fp_server, progress=True)

Explore the available processes:

fp? for general exploration on processes provided by flyingpigeon
fp?

of check out a process in detail:
help (fp.subset_continents) # or type: fp.subset_countries?

Help on method subset_continents in module birdy.client.base:

subset_continents (resource=None, region='Africa', mosaic=False) method of
—birdy.client.base.WPSClient instance

Return the data whose grid cells intersect the selected continents for
—each input dataset.

Parameters
region : {'Africa', 'Asia', 'Australia', 'North America', 'Oceania',
—'South America', 'Antarctica', 'Europe'l}string
Continent name.
mosaic : boolean
If True, selected regions will be merged into a single geometry.
resource : ComplexData:mimetype:application/x-netcdf, application/x-tar,
—application/zip
NetCDF Files or archive (tar/zip) containing netCDF files.

Returns

output : ComplexData:mimetype:application/x—netcdf
NetCDF output for first resource file.

metalink : ComplexData:mimetype:application/metalink+xml; version=4.0
Metalink file with links to all NetCDF outputs.

point out some input files:

urll = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2000.nc’
url2 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2001.nc'
url3 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2002.nc'
urld4 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.
—dailyavgs/surface/slp.2003.nc'

5.8. Tutorials 45

Flyingpigeon Documentation, Release 1.5.1

Call a continent subset process

All netCDF input files will be subsetted seperatly and depending on mosic=True or Fales the selected polygons are
given as seperated files or one output file per input file including one intersection of all selected polygons.

subset_countries is working in the same principe

run the process
out = fp_i.subset_continents (resource=[urll, url2, url3, url4d], region=['Europe',
—'"Africa'], mosaic=True)

You need to wait until the processing 1is done!

HBox (children=(IntProgress (value=0, bar_style='info', description='Processing:"'),
—Button (button_style="'danger'...

There are two outputs: * a netCDF file to have a quick test to check if the process went according to the users needs *
a metalink file with the list of all output files

check the output files:
out.get ()

subset_continentsResponse (
output="http://127.0.0.1:8093/outputs/f232ad4ba-67a0-11lea-al60-9cb6d08a53e7/slp.
—2000_EuropeAfrica.nc',
metalink="http://127.0.0.1:8093/outputs/f232a4ba-67a0-11lea-al60-9cb6d08a53e7/
—input.metad’

)

plot the test file with the flyingpigeon plot function
out = fp_i.plot_map_timemean (resource=out.get () [0])

HBox (children= (IntProgress (value=0, bar_style='info', description='Processing:'),
—Button (button_style='danger'...

the plot process returnes one graphic file
out .get ()

plot_map_timemeanResponse (
plotout_map='http://127.0.0.1:8093/outputs/bdbf0876-67al-11ea-9e91-9cb6d08a53e7/

—tmp_5ahuijnj.png’

)

from IPython.display import Image
from IPython.core.display import HTML
Image (url= out.get () [0], width=400)

46 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

5.9 Changes

5.9.1 1.6 (2020-06-10)

» remove eggshell dependency

* notebooks are part of the test suite

* improved plot processes

* remove mosaic option for subset processes

* polygon subset processes files separately instead of an entire data-set at once
» multiple outputs listed in Metalink output

* update pywps to 4.2.3

* use cruft to keep up-to-date with the cookie-cutter template

5.9.2 1.5.1 (2019-11-11)

* Add Postgres library to docker image.
* Pin PyWPS 4.2.3.

5.9.3 1.5 (2019-10-01)

» Update from cookiecutter template.

e Pin PyWPS 4.2.2.

5.9.4 1.4.2 (2019-09-18)

* Fixed the logic of the nc resource handler in subset (#288).

¢ Various documentation fixes.

5.9.5 1.4.1 (2019-05-20)

* Subset processes enabled (#274).

* Point-inspection process enabled (#271).
* Spatial-analog process enabled (#280).

* Fixed docs build on RTD (#279).

5.9. Changes

47

Flyingpigeon Documentation, Release 1.5.1

5.9.6 1.4.0 (2018-12-03)

New FlyingPigeon without buildout deployment (#265).

5.9.7 1.3.0 (2018-12-03)

Release with merged processes from PAVICS projects.
* Merged processes from Ouranos/PAVICS fork (#262).
* Multiple fixes.

warning: This is not a functional release due to unresolved issues and dependency conflicts. The release is kept as
reference for the available functionality.

5.9.8 1.2.1 (2018-09-14)

Bug-fix release:
* disabled many processes due to conda dependency conflicts (#261).
* simplified buildout.cfg (#245).
e tests for subset_countries added (#237).

e numerous others fixes.

5.9.9 1.2.0 (2018-04-04)

Issues:
* Fixed abstract for CSV files output in pointinspection process: #216
* snappy installation is optional: #229
* Disabled sphinx buildout configuration: #227
* Fixed test failures: #210 and #224
* Fixed codacy report: #211
* Fixed readthedocs build: #207

5.9.10 1.1.0 (2017-12-22)

* disabled analogs processes (using castf90) ... moved to black-swan.
* added new spatial analogs process.
* added initial version of satellite processes using scihub.coperniucs data.

 updated weatherregimes processes.

48 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

5.9.11 1.0.3 (2017-12-21)

* fixed sphinx build.

5.9.12 1.0.2 (2017-12-20)

* updated conda environment.
* fixed pytest configuration.

* updated travis link in Readme.

5.9.13 1.0.1 (2017-11-14)

e fixed version number
* fixed changes formatting

* display version number in service title

5.9.14 1.0.0 (2017-11-01)

* code adapted to pywps4
* ocgis v2 depoyed
* Tests for components

* Version published in Computers & Geosciences

Set of processes

Base processes:

¢ Fetch resources

Fetch GBIF Species Coordination
* Subset Polygons
* Point Inspection
* Timeseries visualisation
* Climate Indices Calculation
Climate Impact:
* Species Distribution Model
* Segetal Flora Calculation
Extreme Weather Events Assessment:
* Analogs of Circulation for reanalyzes Datasets
¢ Analogs of Circulation for model data
* Analogs of Circulation Comparison between reanalyzes and climate model data

* Analogs output data visualisation

5.9. Changes 49

http://www.sciencedirect.com/science/article/pii/S0098300416302801

Flyingpigeon Documentation, Release 1.5.1

* Weather regime Determination for reanalyzes Datasets
* Weather regime Determination for model datasets

* Weather regime projections (based on previous analyses)

5.9.15 0.11.0 (2017-07-11)

converted processes to pywps-4 from next:
* subsetting countries, continents and european regions
* climate indices (daily percentiles, single variable)
* species distribution model
* land-sea mask
* point inspection

¢ fetch resources

5.9.16 0.10.1 (2017-07-11)

disabled bbox parameter ... needs to be fixed in OWSLib.

updated titles of analogs processes.
* updated version in docs.

* disabled wps_gbiffetch test ... was stalled.

5.9.17 0.10.0 (2017-07-10)

¢ Translate code pywps4 conform

 Climate indices dailypercentile

* Climate Fact sheet Generator

* R plot for SDM response cuvres running under CentOS

 Species distribution model Processes modularized in five processes

¢ Direction switch for analogs comparison process

5.9.18 0.9.1 (2016-11-16)

» modularisation of segetalflora process

* docker update

50 Chapter 5. Table of content

Flyingpigeon Documentation, Release 1.5.1

5.9.19 0.9.0 (2016-09-08)

Subset points

Subset European regions

Subset world countries

Subset continents

Analogues for reanalyses datasets

Analogues for model datasets

Analogues for comparison model to reanalyses datasets
Species Distribution Model based on GBIF CSV file
Species Distribution Model with GBIF search included
Weather regimes for reanalyses datasets

Weather regimes for model datasets

Weather regimes for model datasets with centroids trained on reanalyses datasets

Segetalflora

Initial spatial analogues process
Climate indices (simple)

Climate indices (percentile-based)
Download resources

Initial ensembles robustness

Plots for time series

5.9.20 0.2.0 (2016-07-15)

analogs detection and viewer.

timeseries plot.

indices calculation with icclim.

subsetting for countries and regions.

weather regimes.

SDM: species distribution model for tree species based on GBIF.

species biodiversity of segetal flora.

5.9. Changes

51

Flyingpigeon Documentation, Release 1.5.1

5.9.21 0.1.0 (2014-09-04)

Paris Release
* moved code to github.

« Initial Release.

5.10 Credits

5.10.1 Development Lead

¢ Nils Hempelmann <info@nilshempelmann.de>

5.10.2 Contributors

e Carsten Ehbrecht <ehbrecht@dkrz.de>
¢ David Huard <huard.david @ouranos.ca>
* Cathy Nangini

e Trevor James Smith

This package was created with Cookiecutter and the bird-house/cookiecutter-birdhouse project template.

52

Chapter 5. Table of content

mailto:info@nilshempelmann.de
mailto:ehbrecht@dkrz.de
mailto:huard.david@ouranos.ca
https://github.com/audreyr/cookiecutter
https://github.com/bird-house/cookiecutter-birdhouse

CHAPTER
SIX

INDICES AND TABLES

* genindex
¢ modindex

¢ search

Flying Pigeon (the bike) Flying Pigeon is a Chinese bicycle company [..]. The Flying Pigeon is the most popular
vehicle ever. (Wikipedia)

Flying Pigeon (the bird) The pigeon finds its way home over extremely long distances. [..]. (Wikipedia).

53

https://en.wikipedia.org/wiki/Flying_Pigeon
https://en.wikipedia.org/wiki/Pigeon_flying

Flyingpigeon Documentation, Release 1.5.1

54

Chapter 6. Indices and tables

BIBLIOGRAPHY

[Roy2017] Roy, P, Grenier, P., Barriault, E. et al. Climatic Change (2017) 143: 43. doi:10.1007/s10584-017-1960-x

[Grenier2013] Grenier, P., A.-C. Parent, D. Huard, F. Anctil, and D. Chaumont, 2013: An assessment of six dissimilar-
ity metrics for climate analogs. J. Appl. Meteor. Climatol., 52, 733-752, doi:10.1175/JAMC-D-12-0170.1

55

doi:10.1007/s10584-017-1960-x
doi:10.1175/JAMC-D-12-0170.1

Flyingpigeon Documentation, Release 1.5.1

56

Bibliography

INDEX

P

PlotSpatialAnalogProcess (class in flyingpi-
geon.processes.wps_plot_spatial_analog), 44

PlottimeseriesProcess (class in flyingpi-
geon.processes.wps_plot_timeseries), 43

PointinspectionProcess (class in flyingpi-
geon.processes.wps_pointinspection), 40

S

SpatialAnalogProcess (class in flyingpi-
geon.processes.wps_spatial_analog), 43
SubsetBboxProcess (class in flyingpi-
geon.processes.wps_subset_bbox), 42
SubsetcontinentProcess (class in flyingpi-
geon.processes.wps_subset_continents), 41
SubsetcountryProcess (class in flyingpi-
geon.processes.wps_subset_countries), 41
SubsetWFSPolygonProcess (class in flyingpi-
geon.processes.wps_subset_wfs_polygon),
40

57

	Documentation
	Contributing
	License
	Credits
	Table of content
	Indices and tables
	Bibliography
	Index

